
Writing testable code (not only) in Python

Martin Sivak

Red Hat

June 13, 2012

Martin Sivak (Red Hat) Writing testable code (not only) in Python June 13, 2012 1 / 28

1 Introduction

2 Common antipatterns

3 Questionable patterns

4 Good patterns

5 Summary

Martin Sivak (Red Hat) Writing testable code (not only) in Python June 13, 2012 2 / 28

Table of contents

1 Introduction

2 Common antipatterns

3 Questionable patterns

4 Good patterns

5 Summary

Introduction

Why this topic?

Software is getting bigger and more complex

We have API for external users, but keep forgetting about the internal
one

Our packages have to be maintained for up to ten years

and we hesitate to touch them for fear of breaking something
unexpected

The patterns I am about to show are really easy. We just tend to forget to
use them.

Martin Sivak (Red Hat) Writing testable code (not only) in Python June 13, 2012 3 / 28

Introduction

A bit of motivation

If software had 99.9% reliability:

9 703 cheques would be payed from bad accounts every hour

27 800 letters would be lost every hour

3 000 000 bad drug prescriptions would get issued every year

8 605 flights would crash during takeoff every year

about 2000 bugs would be filled against Anaconda during F16 lifecycle

Those numbers were taken from sofware engineering class lectures vpodzime attended this semester.

Number of Anaconda bugs is derived from about 2 mil. downloads of F16.

Martin Sivak (Red Hat) Writing testable code (not only) in Python June 13, 2012 4 / 28

Introduction

A bit of motivation

If software had 99.9% reliability:

9 703 cheques would be payed from bad accounts every hour

27 800 letters would be lost every hour

3 000 000 bad drug prescriptions would get issued every year

8 605 flights would crash during takeoff every year

about 2000 bugs would be filled against Anaconda during F16 lifecycle

Those numbers were taken from sofware engineering class lectures vpodzime attended this semester.

Number of Anaconda bugs is derived from about 2 mil. downloads of F16.

Martin Sivak (Red Hat) Writing testable code (not only) in Python June 13, 2012 4 / 28

Introduction

A bit of motivation

If software had 99.9% reliability:

9 703 cheques would be payed from bad accounts every hour

27 800 letters would be lost every hour

3 000 000 bad drug prescriptions would get issued every year

8 605 flights would crash during takeoff every year

about 2000 bugs would be filled against Anaconda during F16 lifecycle

Those numbers were taken from sofware engineering class lectures vpodzime attended this semester.

Number of Anaconda bugs is derived from about 2 mil. downloads of F16.

Martin Sivak (Red Hat) Writing testable code (not only) in Python June 13, 2012 4 / 28

Introduction

A bit of motivation

If software had 99.9% reliability:

9 703 cheques would be payed from bad accounts every hour

27 800 letters would be lost every hour

3 000 000 bad drug prescriptions would get issued every year

8 605 flights would crash during takeoff every year

about 2000 bugs would be filled against Anaconda during F16 lifecycle

Those numbers were taken from sofware engineering class lectures vpodzime attended this semester.

Number of Anaconda bugs is derived from about 2 mil. downloads of F16.

Martin Sivak (Red Hat) Writing testable code (not only) in Python June 13, 2012 4 / 28

Introduction

A bit of motivation

If software had 99.9% reliability:

9 703 cheques would be payed from bad accounts every hour

27 800 letters would be lost every hour

3 000 000 bad drug prescriptions would get issued every year

8 605 flights would crash during takeoff every year

about 2000 bugs would be filled against Anaconda during F16 lifecycle

Those numbers were taken from sofware engineering class lectures vpodzime attended this semester.

Number of Anaconda bugs is derived from about 2 mil. downloads of F16.

Martin Sivak (Red Hat) Writing testable code (not only) in Python June 13, 2012 4 / 28

Introduction

Cyclomatic complexity

As little sidenote: Cyclomatic complexity by Thomas J. McCabe, Sr.
(1976).

Human brain has limits

the maximum it can track is about 7 independent code paths

Cyclomatic complexity describes the number of lineary independent
code paths in method

Use Pygenie to analyze python code.

If you want 100% code path coverage, you have to test all paths in every
unit and that takes time.

Martin Sivak (Red Hat) Writing testable code (not only) in Python June 13, 2012 5 / 28

http://en.wikipedia.org/wiki/Cyclomatic_complexity
https://github.com/mattvonrocketstein/pygenie

Introduction

Testing levels

Integration testing – test everything together as a black box to see if
it works together and with other projects.

Test C1

C2

C3

Martin Sivak (Red Hat) Writing testable code (not only) in Python June 13, 2012 6 / 28

Introduction

Testing levels

Unit testing – test each component isolated from the rest to
identify the exact place (and situation) where it breaks. This requires
that some seams are prepared to allow passing testing data and
interfaces into the unit.

Test C1

C2

C3

Martin Sivak (Red Hat) Writing testable code (not only) in Python June 13, 2012 7 / 28

Introduction

Testing levels

Integration testing vs. Unit testing

Those two cannot be intermixed and serve different purpose! Always think
about how to write isolated unit test while writing new code.

Martin Sivak (Red Hat) Writing testable code (not only) in Python June 13, 2012 8 / 28

Table of contents

1 Introduction

2 Common antipatterns

3 Questionable patterns

4 Good patterns

5 Summary

Common antipatterns

Initialization side effects

This problem can take many forms in classes and modules:

s t a t e = None

c l a s s S i n g l e t o n (o b j e c t) :
d e f i n i t (s e l f) :

g l o b a l s t a t e
i f not s t a t e :

s t a t e = s e l f # t a i n t s the e n v i r o n m e n t

i m p o r t mymodule
l o g f i l e = open (” p r o j e c t . l o g ” , ”w”)

When unavoidable (or unmodifiable) side-effects like this are present, the
test won’t have clean environment or there won’t be enough seams that
will allow true unit isolation.

Martin Sivak (Red Hat) Writing testable code (not only) in Python June 13, 2012 9 / 28

Common antipatterns

Looking for things

c l a s s Eng ine (o b j e c t) :
d e f rpm (s e l f , v a l u e = 1 0 0 0) :

p a s s

c l a s s Car (o b j e c t) :
d e f i n i t (s e l f) :

s e l f . e n g i n e = Engine ()

d e f s t a r t (s e l f) :
s e l f . e n g i n e . rpm (1500)

7 Car is creating it’s own engine, that is a bit strange..

7 How do you replace the engine? API?

7 If it cannot be replaced, how do you test the car frame?

7 User of this class has no way of discovering the dependency on Engine

Martin Sivak (Red Hat) Writing testable code (not only) in Python June 13, 2012 10 / 28

Common antipatterns

Looking for things - visually

For now, just remember this image, we will see how it can be transformed
to much better hierarchy a bit later.

class Car

Engine Seats

Martin Sivak (Red Hat) Writing testable code (not only) in Python June 13, 2012 11 / 28

Common antipatterns

Make intermixed with Use

What this causes is not too different from the previous case, but it is
nearly impossible to unit test properly:

c l a s s Car (o b j e c t) :
d e f i n i t (s e l f , market) :

i f market == ” g r e e n ” :
s e l f . e n g i n e = BioEng ine ()

e l s e :
s e l f . e n g i n e = D i e s e l E n g i n e ()

s e l f . maximum speed = s e l f . e n g i n e . max rpm
∗ TRANSMISSION

Isolation means that we need to replace self.engine with our mock
instance..

7 Much harder to monkey patch, because you suddenly need to
replicate logic in you test.

Still doable in Python, but getting nasty fast

Martin Sivak (Red Hat) Writing testable code (not only) in Python June 13, 2012 12 / 28

Table of contents

1 Introduction

2 Common antipatterns

3 Questionable patterns

4 Good patterns

5 Summary

Questionable patterns

Monkey patching

Test setUp method replaces all references to dependencies to achieve
isolation. Simplest method at first, but gets ugly fast.

c a r = Car ()

r e p l a c e e x i s t i n g e n g i n e w i t h dummy
dummy = MockEngine ()
c a r . e n g i n e = dummy

c a r . s t a r t ()
a s s e r t dummy . rpm == 1500

3 easy for simple cases

7 mocking modules – sys.modules magic

Martin Sivak (Red Hat) Writing testable code (not only) in Python June 13, 2012 13 / 28

Questionable patterns

Method overriding

3 Separate creation and logic

7 Using inheritance instead of better composition

Not perfect, but has it’s uses (SocketServer, ThreadingMixIn)

c l a s s Car (o b j e c t) :
d e f g e t E n g i n e (s e l f) :

””” g e t e n g i n e ””” + 1 # n o t i c e t he s y n t a x e r r o r
r e t u r n Engine ()

Test can then replace engine by overriding the method:

c l a s s T e s t a b l e C a r (Car) :
d e f g e t E n g i n e (s e l f) :

r e t u r n Dummy()

Test passes OK, but the actual code fails..

Martin Sivak (Red Hat) Writing testable code (not only) in Python June 13, 2012 14 / 28

Questionable patterns

Service locator

c o m p o n e n t s t o r e = {}
c o m p o n e n t s t o r e [” e n g i n e ”] = BioEng ine ()
c o m p o n e n t s t o r e [” wings ”] = Boeing747Wings ()

c l a s s Car (o b j e c t) :
d e f i n i t (s e l f , s t o r e) :

s e l f . e n g i n e = s t o r e . g e t (” e n g i n e ”)

c a r = Car (c o m p o n e n t s t o r e)

3 One argument passes everything needed

7 Unclear API hides dependencies

7 Mocks get enhanced until the test passes, but by that time the setup
routine is more complicated than the code under test

Considered as an Antipattern in modern testing lore

Martin Sivak (Red Hat) Writing testable code (not only) in Python June 13, 2012 15 / 28

Table of contents

1 Introduction

2 Common antipatterns

3 Questionable patterns

4 Good patterns

5 Summary

Good patterns

Good patterns

”Nothing that makes a test easy is wasted...We often add methods to
classes simply to make the classes easier to test.”
– (Robert C. Martin. Software Development, Vol. 10, No. 12, pg 50)

Martin Sivak (Red Hat) Writing testable code (not only) in Python June 13, 2012 16 / 28

Good patterns

Dependency Injection

Dependency injection is a design style in which every class receives all it’s
real dependencies via API.

Martin Sivak (Red Hat) Writing testable code (not only) in Python June 13, 2012 17 / 28

Good patterns

Factory Pattern

Factory

Engine Seats

class Car

Martin Sivak (Red Hat) Writing testable code (not only) in Python June 13, 2012 18 / 28

Good patterns

Inversion of Control

Inversion of Control is a concept which combines Dependency Injection
and Factory pattern.

Where is the inversion?

The object is not creating it’s peers, but somebody (Factory) creates (and
initializes) them for him and passes them. (Dependency Injection)

Martin Sivak (Red Hat) Writing testable code (not only) in Python June 13, 2012 19 / 28

Good patterns

Type 3 IoC – Constructor injection

Dependencies are passed using constructor argument.

c l a s s Car (o b j e c t) :
d e f i n i t (s e l f , e n g i n e) :

s e l f . e n g i n e = e n g i n e

3 The object is always fully initialized

3 Default arguments can make instantiation easy (only changes need to
be specified)

7 Constructor can have lots of arguments

Martin Sivak (Red Hat) Writing testable code (not only) in Python June 13, 2012 20 / 28

Good patterns

Type 2 IoC – Setter injection

Dependencies are inserted using setters after the object was created.

c l a s s Car (o b j e c t) :
d e f i n i t (s e l f) :

p a s s

d e f s e t E n g i n e (s e l f , e n g i n e) :
s e l f . e n g i n e = e n g i n e

3 Less arguments in constructor

Called only as needed (but think about where you set the defaults)

7 Possibility of ending up with not fully usable object

Martin Sivak (Red Hat) Writing testable code (not only) in Python June 13, 2012 21 / 28

Good patterns

Type 1 IoC – Interface injection

Not really applicable for Python.

It is a form of setter injection that uses interfaces to define dependencies
and API.

Used in Java world, where the interfaces and connection code can be
generated and properly inserted by IDE + compiler.

Martin Sivak (Red Hat) Writing testable code (not only) in Python June 13, 2012 22 / 28

Good patterns

How to create objects inside?

What if we really need to create objects inside?

c l a s s R e c e i p t (o b j e c t) :
d e f i n i t (s e l f , shop , amount) :

p a s s

c l a s s R e g i s t e r (o b j e c t) :
d e f payment (s e l f , goods) :

r e t u r n R e c e i p t (s e l f . a d d r e s s , goods . v a l u e ())

Martin Sivak (Red Hat) Writing testable code (not only) in Python June 13, 2012 23 / 28

Good patterns

How to create objects inside? – 2

Pass a Factory! You can even use default arguments.

c l a s s R e g i s t e r (o b j e c t) :
d e f i n i t (s e l f , r e c e i p t F a c t o r y = R e c e i p t) :

s e l f . r e c e i p t F a c t o r y = r e c e i p t F a c t o r y

d e f payment (s e l f , goods) :
r e t u r n s e l f . r e c e i p t F a c t o r y (s e l f . a d d r e s s ,

goods . v a l u e ())

Martin Sivak (Red Hat) Writing testable code (not only) in Python June 13, 2012 24 / 28

Good patterns

Problematic areas

If we use something with side effects in our code, we have to be extra
careful. Imagine having delay of 10 seconds hardcoded into code under
test and 10 000 tests to run...

1 filesystem, sockets

2 threads, wait loops, delays

3 GUI

Most of the code using these can be made unit testable by using factories
and default arguments:

d e f w a i t (u n t i l , t = t ime . t ime , s = t ime . s l e e p ,
f = open) :

w h i l e t () < u n t i l :
s (1)

f (” data . t x t ” , ”w”) . w r i t e (” Test ! ”)

Martin Sivak (Red Hat) Writing testable code (not only) in Python June 13, 2012 25 / 28

Table of contents

1 Introduction

2 Common antipatterns

3 Questionable patterns

4 Good patterns

5 Summary

Summary

Further reading

The article that started it all by Martin Fowler

Dependency injection @ Nette

Principles of Test Automation

Guide: Writing Testable Code by Misko Hevery (Google)

Mock and Testing library by Michael Foord

Martin Sivak (Red Hat) Writing testable code (not only) in Python June 13, 2012 26 / 28

http://martinfowler.com/articles/injection.html
http://doc.nette.org/en/dependency-injection
http://xunitpatterns.com/Principles of Test Automation.html
http://misko.hevery.com/code-reviewers-guide/
http://www.voidspace.org.uk/python/mock/

Summary

Summary

All classes and functions should publicly declare their dependencies

Ask for a dependency only if you really need it directly

Always think about the test while writing code (or write test first)

Martin Sivak (Red Hat) Writing testable code (not only) in Python June 13, 2012 27 / 28

Summary

Questions?

Thank you for listening.

Questions?

You can contact me at msivak@redhat.com.

Martin Sivak (Red Hat) Writing testable code (not only) in Python June 13, 2012 28 / 28

	Introduction
	Common antipatterns
	Questionable patterns
	Good patterns
	Summary

